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Unit 76: Management Mathematics                       Handout #12 

Econometrics 
Definition and Scope  
Econometrics is about measuring economic relationships. It is a combination of 
economy theory, mathematical economics and statistics, but it is completely 
distinct from each one of these branches of science. 
Econometrics is the overlap of economic theory, maths and statistics and, but  in 
fact there are reasons why it should be considered a subject in its own right.  
Firstly, much of economic theory is qualitative – the law of demand suggests that 
as price increases demand will fall, but does not tell us how much. Econometrics 
will tell us how much the quantity demanded will fall. Secondly, mathematical 
economists will create mathematical models but will not empirically verify their 
models – Econometrics will translate models into forms that can be tested and 
estimated numerically. Thirdly, statistics usually use data generated form 
experiments but economics data is rarely generated in such a way but is instead 
collected by a range of public and private agencies, by questionnaire or 
observation, and are usually non-experimental, and thus likely to contain 
problems of measurement error. Econometrics has methods available to deal with 
“dirty” data and other data problems.  
The Econometric Model  : y = Constant + β2 X2 + β3 X3 + e 
 
Economic relationships: is a relation between two economic variables: 
                                          
Dependent variable, y, is focus of study (explain changes in y). 
Example : Dependent variable, y: Product demand 
 
Independent Variables X2 and X3 or predictors 
 
Exogenous(alternatively :Endogenous):Advertising, competition,prices,competitor 
prices ,Economic conditions. 
 
Exogenous variable: Its value is determined externally from the system of 
equations of an econometric model. 
 
Endogenous variable: At least part of its value is determined internally in the 
system of equations of an econometric model. 
Example:Advertising(Endogenous) ,Competition(Exogenous) ,Sales(Endogenous) 
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Econometric methodologies: 
 
1. Statement of theory or hypothesis (e.g. the law of demand) 
2. Specification of the mathematical model (eg Q=α + βP) 
3. Specification of the statistical or econometric model (eg Q=α + βP + u) 
4. Collection of data (eg from published sources or own survey) 

5. Parameter estimation (eg Q Pβα ˆˆˆ += ) 
6. Testing of hypotheses (eg is β<0?) 
7. Forecasting/Prediction 
 you will see these as 5 stages later when we discuss Producing Econometric Models. 
A statistical method called regression analysis is used to estimate the 
relationship between various economic variables. 
 
Purpose of regression analysis  
 
-Model  a  relationship  among  economic variables, such as  y =  f(x). 
Between independent y and dependent x. 
-Measure the error RSE (residual standard error) in using that relationship to 
Forecast  or predict the value of one variable, y, based  on  the  value  of another 
variable,  x. 
-Measure the degree of association(i.e. correlation) 
   between the variables. 
r = coefficient of correlation  
R2 = coefficient of determination. 
Statistical Background  
1. The covariance between two random variables, X and Y, measures the 
     linear association between them. It is the mean of the product of the 
     deviations of two numbers from their respective means: 
 
                                            
                                          Cov(X,Y) = 
   
Note that variance is a special case of covariance: Var X = Cov(X,X)  
 
2. The correlation between two random variables X and Y is their covariance 
     divided by the square roots of their respective variances(product of their  
     standard deviations). 
         

                                            r(X,Y)  = 
VarYVarX
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     Correlation Coefficient is a pure number falling between -1 and 1. 
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3. The Regression Model(Ordinary Least Squares OLS) 
Recall that regression analysis allows us to explore relations between variables: it 
allows us to answer questions like is there a positive or negative relationship 
between X and Y? Is the relationship strong? Is it statistically significant? What 
happen to Y if X increases by 1%? When we move beyond the simple linear 
regression analysis we can also ask questions like what happens to Y if X 
increases, controlling for Z? This is a very powerful tool, and important for 
analyzing data, testing theory and for providing policy suggestions. 
Example: TV advertisements on Friday night and Sales of cars the next 
Saturday. We plot TV ads against Sales to look first at the correlation and see 
that there probably exists a positive relationship between TV ads and Sales, ie 
the more ads on a Friday night the higher sales were the following Saturday. This 
plot is shown below.  
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Figure 1: TV ads and Sales 

Recall also that it may be possible to see that we can draw a straight line through 
the data, ie draw a line with the general equation Y=a+bX, where a is the 
intercept and b the slope.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: fitting a line through the data 
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Where we draw it is somewhat arbitrary: we could choose different intercepts and 
different slopes and draw many lines through the data: which is best? 
 
There is however a method for drawing a line that best fits the data, and that 
method is called ordinary least squares or OLS for short. OLS gets its name 
because it finds the line that fits the data by  
 

“minimising the sum of squared errors”. 
 

To see this , imagine a line plotted throught the data series. Let the line be called 
, that is we predict sales (Y ) is a linear function of TV Ads, Xii XbaY ˆˆˆ += î i , by 

estimating what are. See Figure 3. Look at the gaps between the line (Y ) 

and each data point ( ) – these are called the regression errors or the 

regression residuals. Some of these residuals or errors are positive (ie the data 
point lies above the line, so Y >Y ) and others are negative (ie the data point lies 

below the line, so Y <Y ).  
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Figure 3: minimising the regression errors 
OLS does two things: 
– it finds the line that makes the sum of these errors of residuals equal to zero – 

so they cancel each other rout 
– it finds the line that minimizes the sum of the squared errors or residuals – 

i.e. squares all the gaps (so they all become positive values), adds them up 
and finds the values of the slope and intercept that minimizes this sum.   
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Sometimes the OLS line will not be a very good fit – there might not be an 
identifiable relationship between X and Y, perhaps for theoretical reasons or 
because our data contains some values that don’t fit very well with the rest of the 
data (perhaps the weather has been too bad for people to go and buy cars) .  
 
We can use the simple linear case again to illustrate. We want to know how well 
the line fits the data.One way of doing this is to consider the diagram in Figure4, 
and in particular the gap between actual Sales on a each day and mean Sales for 
the period. If we add up all the squares of these gaps we have the Total Sum of 
Squares, TSS, and we can see that this can be broken into two parts. The first 
part is the sum of squared errors or residuals which we have already looked at 
and which we have tried to minimize – call this RSS. The second part is called the 
explained sum of squares, ESS, and is the sum of the squares of the gap 
between the regression line and mean sales.  ( some text books confusingly call 
the residual sum of squares the error sum of squares – ie ESS for short, and the 
explained sum of squares the regression sum of squares, ie RSS for short: there 
is no convention, so be careful !) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Goodness of fit 
The better we have done at minimizing RSS the better the goodness of fit 
So TSS=RSS+ESS , ie total =residual +  explained 
We can divide everything through by TSS, to give: 1=RSS/TSS + ESS/TSS 
and re-arrange to give us : ESS/TSS = 1- RSS/TSS 
If the line is a really good fit then RSS will be very small compared to TSS, so the 
ratio RSS/TSS will be very small, hence ESS/TSS will be close to one. The closer 
it is to 1 the better the fit. ESS/TSS is better known as the R2 coefficient, or the 
coefficient of determination. In technical terms the R2 measures the percentage 
of variation in the Y variable that is explained by the independent variables.  
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4. Autocorrelation: known also as serial correlation 
    An autocorrelation measures the association between two sets of observations 
    separated by a lag. 
Example: The demand of a product (e.g. beer) related to the demand for the 
same day last week(this Saturday versus Saturday last week). 
The most common cause of autocorrelation errors is that the model is mis-
specified by omitting a variable.If this omitted variable is itself auto correlated 
then the error term will mirror this behavior. 
The Durbin-Watson test is used to detect auto correlated errors.(More on this 
later) 
 
5. Multicollinearity  
    When the independent variables in a multi regression model are highly 
    correlated with each other. 
     
Producing an Econometrics model  
 
Application of econometric methods consists of five Stages :                               
 
1. Formulation :  
 -Choice of the variables:for example demands & advertising expenditure. 
 - Specifications of variables: exogenous & endogenous. 
 -Mathematical form of the equation : linear & non-linear  
  (usually called Functional Forms).  
                                  
 Functional Forms:     
-Linear Form : Yi = α + β1X1 + β2 X2  + β3 X3  + β4X4 + ….. + e  
  Example : Sales = α + β1(Advertising) + β2 (Personal Income) + β3 (age) + e 
 

-log-log : Consider the following 'exponential' regression model: Y  eX=  i
ii

εβα 1

which we can express as a linear (in logs) regression model by taking natural 
logarithms of both sides: εββ iii    +  lnX   +   = 10lnY  where αβ ln0  =  

Example:Coffee demand function: ln Yi = -0.7774 – 0.2530lnXi 
where Yi : Coffee consumption in cups per day & Xi = Coffee price per pound. 
 
-linear-log: Take an example from labour economics.  The theory of human 
capital investment says that individuals will invest in education because it raises 
their productivity, and higher productivity raises their potential wages in the 

labour market. W   e e Y=  iiS
0i

εβ 1

where W is income or earnings, and S is the number of years of schooling 
(education).  Y0 represents earnings in the absence of all education. 
Taking the logs of both sides:  lnW lnY  =       where   +  S   +   = 0iii βεββ 010    
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2. Estimation: 
-Data collection. 
- Select an estimator: Ordinary least square method (OLS). 
-Estimate the regression model using the chosen estimator. 
-Test whether the assumptions made are valid (in which case the regression 
  model is statistically well-specified) and the estimator will have the desired  
  properties. 
Regression output:  
The output from an OLS estimation procedure will give the following information:  
-A constant : α  
-Regression Coefficients: β1 , β2 , …. 

-Standard error of Y estimate (residual error): 
2

2

−n
e

 ; 
^

YYe −=  

-Standard Error of Regression Coefficients SE(β) : is used to measure how much   
error there is in these estimates. 
- Coefficient of Determination: R2(we want this close to 1) 

-Adjusted R2 : 
2R used to judge the relative accuracy of any model. 

 for e.g. if  
2R = 0.9375 then the model has explained 93.75% of the original  

 variance. 
-Number of Observations : n  
-Degrees of freedom: k  
- Durbin-Watson : DW used to detect auto correlated errors;should be close to 2. 
  (More on this later)  
- The F-value : used to measure the overall statistical significance of the 
   relationship between the variables(joint testing; More on this later). 
Estimation Details: Testing the coefficients for being non zero 
Common procedure : 
 
H0 : β = 0 ; the true regression coefficient is not statistically significantly 
different than 0.( we want to be able to reject this one) 
 
H1 : β≠  0 ; the true regression coefficient is statistically significantly 
different than 0. 
 
A test statistic, t , is calculated and compared to a t-table(for less than 30 
observations) value assuming the null hypothesis is true. 
 
The statistic  t = coefficient /Standard error of coefficient =β/ SE(β)   
 
If  |t| < t-table        α = 0.05  or less : Accept H0 
If  |t| > t-table       α = 0.05  or less : Reject H0 
                
Use the following for observations > 30 : t > Zα/2  to reject H0 
where Z is the tabulated Normal-value. 

                                              http://www.mathyards.com/lse                         
                                                                        

7



For comments, corrections, etc…Please contact Ahnaf Abbas: ahnaf@uaemath.com 
This is an open source document. Permission is granted to copy, distribute and/or modify this document 
under the terms of the GNU Free Documentation License, http://www.gnu.org/copyleft/fdl.html        
Version 1.2 or any later version published by the Free Software Foundation. 
 
Example: 
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The F-Value : for joint coefficient testing : 
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where n is the sample size and k is the number of parameters in the regression. 
If  Fcalculated > Ftable; reject  H0 (as in the above example). 
 
3. Validation: Checking the model against econometric criteria (Assumptions). 
OLS Assumptions: Yi = α + β1X1 + β2 X2  + β3 X3  + β4X4 + ….. + ei  
For the residuals ei 
A1 : The residuals ei  are normal random variables. 
A2 : The residuals have constant variance(this is called homoscedasticity) 
A3 : The expected value of the residuals is always zero 
A4 : The residuals are independent from one another(not auto correlated) 
For the independent variable  
A5 : es are precise  The X valu
A6 : The independent variables are not too strongly collinear 
Further assumptions: 
A7: The independent variables and the residuals are uncorrelated. 
A8: The model is true : no mis-specification, no missing variables. 
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The Durbin-Watson test for autocorrelation errors:  

d = 
∑

∑ −−
2

2
1 )(

t

tt

e
ee

; d ≈ 2(1- r) ; r : Coefficient of correlation between et & et-1  

-The value of d is between 0 : perfect positive autocorrelation and 4: perfect 
negative autocorrelation. . 
- d = 2 indicates no autocorrelation. 
-dl and du are the lower and the upper values used to make inference. 
-The following illustrates the conclusions associated with different values of  d : 
 
      Positive   Inconclusive  No autocorrelation   Inconclusive  Negative 
     reject            H0                  Accept     H0               reject            H0 
 0                 dl                  du                          4 - du                4 – dl           4 
Checking violations:  
 
A2: Errors are homoskedastic; they have the same variance for all values of the 
independent variable(Xi). 
A Violation:  Errors are heteroskedastic; the variance changes as the 
independent variable changes. 
Standard errors of the regression coefficients are biased (either too big or too 
small).   
-If too small, then t-statistics will be too large.                                                   
-If too large, then t-statistics will be too small.   
-This causes inaccurate significance tests.   
A4: Errors Are Independent – No Autocorrelation 
Standard errors of the regression coefficients are biased.                                     
-SE too small (positive autocorrelation):t-statistics too large and coefficients too 
significant.   
-SE too large (negative autocorrelation):t-statistics too small and coefficients not 
significant enough.   
-To determine whether autocorrelation exists : Use Durbin-Watson Test: 
  d = 0 when r=1 (perfect positive correlation). 
  d = 4 when r=-1 (perfect negative correlation). 
  d = 2 when r=0 (no correlation). 
A7: Errors Are Uncorrelated with Independent Variables 
       Results in biased regression coefficients. 
Causes  

1) Specification Bias (Omitted Variables): Variable left out of model, Error 
term picks up variation of left-out variable, Due to bad theory or data is 
not available. 

2) Measurement Error: Data entry errors, Use of bad data 
3) Simultaneous Equation Bias: Regression equation is part of a simultaneous 

equations system. 
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Multicollinearity Problems 
Multicollinearity occurs when the X values,the predictors,are themselves highly  
correlated (intercorrelated)(see definition above). 
Solutions: 

- Keep variables in equation but understand interpretation. 
- Drop one or more variables,but understand interpretation. 
- Combine variables. 
- Collect more data. 

 
4. Forecasting: Prediction & estimating errors. 
 
 
5. Implementation. 
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Read the case study :                         
 
Lydia Pinkham’s Vegetable Compound. 
 
          study guide pp 78 – 83. 
 
 
 
 
 


