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SECTION A

Answer all SIX questions from this section (60 marks in total)

1 Show that the function

flz,y) = 7 + zy cos (5)

*z—i-y

is homogeneous of degree 2, and verify that

of of ,
T +yé‘?j = 2f(z,y).

2 Suppose the supply and demand functions for a good are, respectively,
¢°(p) =bp—a, ¢”(p) = c—dp,

where a, b, ¢, d are positive numbers. Find the equilibrium price and
quantity. If a per-unit (excise) tax of T is imposed, find the new
equilibrium price and quantity. Find also the amount of tax revenue
and determine the value of T that maximises the tax revenue. Show,
further, that the tax level that maximises the revenue reduces the sales
of the good by exactly half.

3 The demand function for a good is ¢ = qD(p), and the price elasticity of
d
demand, € = _Ed_;i’ satisfies £(p) = 2p?. Given that ¢?(1) = 10, find
q

the demand function ¢?(p).
4 Using a matrix method, find all the solutions to the following system of
equations:

22?1 —~ ZI9 + Z3
T1 — 3T + 223 =
3.’L'1+.’EQ = 4,

5 Find the eigenvalues of the matrix

-5 -2
=7
and find an eigenvector corresponding to each eigenvalue. Hence find an

invertible matrix P and a diagonal matrix D such that P'AP = D.
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Use your result to find the sequences z; and y; such that zo =1, yo = 2
and, fort > 1,

Ty = —5Ti_1 — 2yt

Yo = 4Ty_q + Yio1.

6 Find the function f(z) satisfying

_ o BF A e o
ﬂm—O,ﬂU—O,E§~6Eﬁ@f_9x 15.

SECTION B

Answer two questions from this section (20 marks each)

7 (a) Expand as a power series, in terms up to z*, the function

f(z)=¢€""7.

(b) Functions f(¢) and g¢(t) are related as follows:

T = 51— 900
Yo aj(1) + 4glt).

If f(0) =2 and g(0) =1, find f(¢) and g(¢).

8 (a) Find the inverse of the matrix

2 =2 0
A=1{ -1 3 0
0 1 -1

(b) The balance S(t) of a bank account at time ¢ is subject to continuous
compounding and a net outflow. The balance varies with time
according to the equation

s 5(t)
P T e
2
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The balance at time 0 is P. By solving this differential equation, find
S(t).

Suppose that P = 300. Show that the balance S(¢) initially increases,
to a maximum value, and thereafter decreases.

9 (a) Suppose the demand function for a commodity is given by
. p
RN VEERTIEN
Find the elasticity of demand, in terms of p. Determine the values of p
for which the demand is inelastic.

(b) The sequence y, has the property that, for t > 1,
Yr = cypr1 + (1 = c)ys—1,
where ¢ is a fixed number between 0 and 1/2. Show that

1-c\’
yt:A+B 5

c

for some numbers A4 and B.

10 (a) Find the values of z,y, z that minimise the function
ulz,y, 2) =zt + 9 + 24,
subject to the constraint z + 8y + 27z = 10.

(b) Suppose that the price p(t) of a good varies continuously with time, and
that the quantities demanded and supplied are given, respectively, by
") =1-p, ¢*) =p.
Price adjusts according to the rule

dp 5
= =" -a")".
Find an expression for p(t), given that when ¢ = 0 the price is 1/4. How

does the price behave as t tends to infinity?
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